Кингисеппская школа №3


 
Главная
 
Числа Фибоначи
 
Кибернетика
 
История английского
 
Кладбищеннская церковь
 
Чистый понедельник
 
Медиатека по физике 7кл.
 
Как сделать бумагу?
 
 

 

"Код да Винчи  и числа Фибоначчи" 

Руководитель проекта: учитель математики  Парная  Татьяна Петровна

Участники: учащиеся 10 а класса Неплохов Николай,

Федосеева Ангелина, Гнивуш Татьяна.

 

Оглавление:

1. Гармония

 

2.  Золотое  сечение  и композиция

 

3.  Второе золотое сечение

 

4.  Золотой треугольник

 

5.  История золотого сечения

 

6.  Применение золотого сечения.

 

7.  Чи́сла Фибона́ччи.  Ряды  Фибоначчи

 

8.  Обобщенное золотое сечение

 

9.  Принципы формообразования в природе

 

10. Золотое сечение и симметрия

 

11. Факты

 

12. Заключение

 

13. Стихи по Фибоначчи из Интернет

 

Гармония       

С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т.д., демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного, сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония.

Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине.

Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?

Существует легенда, что однажды Будда провел проповедь без единого слова. Он просто протянул цветок своим прихожанам.

Известный итальянский теоретик архитектуры Леон-Баттиста Альберти, написавший много книг о зодчестве, говорил о гармонии следующее:

"Есть нечто большее, слагающееся из сочетания и связи трех вещей (числа, ограничения и размещения), нечто, чем чудесно озаряется весь лик красоты. Это мы называем гармонией, которая, без сомнения, источник всякой прелести и красоты. Ведь назначение и цель гармонии - упорядочить части, вообще говоря, различные по природе, неким совершенным соотношением так, чтобы они одна другой соответствовали, создавая красоту... Она охватывает всю жизнь человеческую, пронизывает всю природу вещей. Ибо все, что производит природа, все это соизмеряется законом гармонии. И нет у природы большей заботы, чем та, чтобы произведенное ею было совершенным. Этого никак не достичь без гармонии, ибо без нее распадается высшее согласие частей".

В Большой Советской Энциклопедии дается следующее определение понятия "гармония":

"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".

"Формул красоты" уже известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы - квадрат, круг, равнобедренный треугольник, пирамиду и т.д. В пропорциях сооружений отдаются предпочтение целочисленным соотношениям.

Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию называли по разному - "золотой", "божественной", "золотым сечением", "золотым числом", "золотой серединой".

"Золотая пропорция" - это понятие математическое и ее изучение - это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики.

http://www.goldenmuseum.com/index_rus.html

 

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

        До 1900-х годов термин Phi не применялся, пока американский математик Марк Барр не использовал греческую букву φ (phi) для определения этой пропорции. К этому времени эта вездесущая пропорция была известна как золотое деление, золотое сечение, золотое соотношение, а также как Божественная пропорция.

Число 1,618 у математиков называется число PHI (фи), которое можно получить из  последовательности Фибоначчи (математической прогрессии: 1-1-2-3-5-8-13-21...) известной не только тем, что сумма двух соседних чисел в ней равна последующему числу, но и потому, что частное двух соседствующих чисел обладает уникальным свойством- приближенностью к числу 1,618, то есть к числу PHI. Несмотря на мистическое происхождение, число фи сыграло по-своему уникальную роль. Роль кирпичика в фундаменте построения всего живого на земле. Все растения и даже человеческие существа наделены физическими пропорциями, приблизительно равными корню от соотношения числа фи к 1. Раньше считали, что число PHI было предопределено Творцом вселенной. Ученные древности называли одну целую шестьсот восемнадцать тысячных «Божественной Пропорцией». Известно ли вам, что если в любом на свете пчелином улье разделить число женских особей на число мужских, то вы всегда получите одно и то же число- PHI. Леонардо Да Винчи изучал человеческое тело, и никто лучше него не понимал божественной структуры человеческого тела. Его строения. Он первым показал, что тело человека состоит из «строительных блоков», соотношение пропорций которых всегда равно нашему заветному числу- PHI.

назад

Золотое сечение и композиция

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, и расположены они на расстоянии 3/8 и 5/8 от соответствующих краев плоскости. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

Основные золотого сечения.

 

Золотое сечение – гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d.

Отрезок прямой АВ можно разделить на две части следующими способами:

  • на две равные части – АВ : АС = АВ : ВС;

  • на две неравные части в любом отношении (такие части пропорции не образуют);

  • таким образом, когда АВ : АС = АС : ВС.

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a : b = b : c или с : b = b : а.

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнеием:

x2x – 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

назад

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44 : 56.

Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Рис. 3. Построение второго золотого сечения

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56 : 44.

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

 

назад

 

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

 

назад

 

История золотого сечения

 

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

 

 

 

 

Рис. 7. Динамические прямоугольники

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица – ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M. На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

 

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа – важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1,6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

Рис. 10. Золотые пропорции в частях тела человека

В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Соотношение величин 3 : 5 или в расчетном решении 1 : 1,6 мы очень часто встречаем в человеческом теле. Соотношение пальцев, соотношение пальца к кисти, кисти к предплечью, длина руки к величине тела и многие другие соотношения соответствуют этому закону пропорции.

назад

 

Применение золотого сечения.

Оптимальные физические параметры внешней среды

Органы чувств человека дают ему возможность воспринимать все многообразие внешнего мира, чутко реагировать даже на незначительные изменения внешней среды, выбирать способ поведения, обеспечивающий ему безопасное для жизни существование. Однако органы чувств не могут воспринимать весь диапазон соответствующих параметров внешней среды, которые могут возникнуть в природе. Существуют некоторые границы ощущения, характеризуемые минимальными и максимальными параметрами внешней среды, которые человек способен воспринимать. Эти границы называются абсолютно нижним и абсолютно верхним порогами ощущений.

В книге русского ученого В.И. Коробко "Золотая пропорция и проблемы гармонии систем" (1998 г.) предпринята интересная попытка показать, что нижние и верхние пороги связаны через золотую пропорцию.

Громкость звука. Известно, что максимальная громкость звука, которая вызывает болевые ощущения, равна 130 децибеллам. Если разделить этот интервал золотой пропорцией 1,618, то получим 80 децибелл, которые характерны для громкости человеческого крика. Если теперь 80 децибелл разделить золотой пропорцией, то получим 50 децибелл, что соответствует громкости человеческой речи. Наконец, если разделить 50 децибелл квадратом золотой пропорции 2,618, то получим 20 децибелл, что соответствует шепоту человека.

Таким образом, все характерные параметры громкости звука взаимосвязаны через золотую пропорцию.

Влажность воздуха. При температуре 18-20° интервал влажности 40-60% считается оптимальным. Границы оптимального диапазона влажности могут быть получены, если абсолютную влажность 100% дважды разделить золотым сечением:

100/2,618 = 38,2% (нижняя граница); 100/1,618 = 61,8% (верхняя граница).

Давление воздуха. При давлении воздуха 0,5 МПа у человека возникают неприятные ощущения, ухудшается его физическая и психологическая деятельность. При давлении 0,3 - 0,35 МПа разрешается только кратковременная работа, а при давлении 0,2 МПа разрешается работать не более 8 мин. Все эти характерные параметры связаны между собой золотой пропорцией:

0,5/1,618 = 0,31 МПа; 0,5/2,618 = 0,19 МПа.

Температура наружного воздуха. Граничными параметрами температуры наружного воздуха, в пределах которых возможно нормальное существование (а, главное, стало возможным происхождение) человека является диапазон температур от 0 до +(57-58)°С. Очевидно, по первой границе пояснений можно не приводить. Вторая граница соответствует максимально возможной температуре наружного воздуха для организма человека. Разделим указанный диапазон положительных температур золотым сечением. При этом получим две границы:

 

Обе границы являются характерными для организма человека температурами: первая соответствует температуре тела человека 36,6°С (отклонение составляет менее 3%), вторая является наиболее благоприятной температурой для организма человека.

Последнюю границу можно получить из температуры тела человека с помощью золотой пропорции:

36,6/1,618 = 22,62°С.

Хотя все эти расчеты, на первый взгляд, кажутся искусственными, но тем не менее они заставляют нас задуматься над ними, а иногда и практически использовать.

 

Золотое сечение в живописи

 

Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости.

Данное открытие у художников того времени получило название "золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

картина Н.Н. Ге "Александр Сергеевич Пушкин в селе Михайловском".

В этой картине фигура Пушкина  поставлена художником слева на линии золотого сечения. Композиционное построение картины подобно картине Репина. Голова военного, с восторгом слушающего чтение поэта, находится на другой вертикальной линии золотого сечения.

Широко использовал золотое сечение в своем творчестве талантливый русский художник Константин Васильев, рано ушедший из жизни. Еще будучи студентом Казанского художественного училища, он впервые услышал о "золотом сечении". И с тех пор, приступая к каждой своей работе, он всегда начинал с того, что мысленно пытался определить на холсте ту основную точку, куда должны были стягиваться, как к невидимому магниту, все сюжетные линии картины. Ярким примером картины, построенной "по золотому сечению", является картина "У окна".

 

О чем хотел поведать нам художник в этой картине? Об этом можно лишь догадываться. Одно бесспорно - перед нами жизнь как она есть. То, что двое этих молодых людей бесконечно любят друг друга, мы понимаем при первом взгляде на картину. Но если он весь во власти своего неудержимого порыва, готов отстаивать свою любовь перед кем угодно, то ее чувства что-то сдерживает. Что именно - страх, гордыня, верность родовым традициям: А может быть, наитие, природное чутье, более свойственное женскому сердцу, подсказывает ей, что не время им сейчас думать о любви?

Приведём пример такого «двойного золотого сечения» из живописи.
 

Пример этот особенно интересен потому, что он взят из произведения крупнейшего, никем не оспариваемого представителя реалистического направления в живописи.
 

И тот факт, что это встречается именно у него, может служить укором тем предрассудкам, согласно которым для реализма будто бы достаточно одной бытовой правды, строгость же композиционного письма отнюдь не важна и даже чуть ли не вредна!

Анализ работ подлинно великих мастеров реализма говорит о другом. Проблемы композиции творчески мучили их так же неустанно, как проблемы воплощения правды жизни, ибо до конца искренне прочувствованная и до конца полно выраженная в своих чувствах правда воплотится через все средства, которые находятся в руках автора. Но об этом уже было сказано подробно и обстоятельно. Перейдём к примеру.
 

Картина эта — «Боярыня Морозова». Автор — В. И. Суриков.
Та картина и тот художник, о правдивости которых писал Стасов (в 1887 г.):
«...Суриков создал теперь такую картину, которая, по-моему, есть первая из всех наших картин на сюжеты из русской истории... Сила правды, сила историчности, которыми дышит новая картина Сурикова, поразительны...».
И неразрывно с этим, это тот же Суриков, который писал о своём пребывании в Академии:
«...больше всего композицией занимался. Там меня «композитором» звали: я всё естественность и красоту композиции изучал. Дома сам себе задачи задавал и разрешал...».
Таким «композитором» Суриков оставался на всю жизнь. Любая его картина — живое тому подтверждение.
И наиболее яркое — «Боярыня Морозова».
Здесь сочетание «естественности» и красоты в композиции представлено, пожалуй, наиболее богато.
Но что такое это соединение «естественности и красоты», как не «органичность» в том смысле, как мы о ней говорили выше?
Но где идёт речь об органичности, там... ищи золотое сечение в пропорциях!
Тот же Стасов писал про «Боярыню Морозову» как о «солисте» в окружении «хора». Центральная «партия» принадлежит самой боярыне. Роли ее отведена средняя часть картины. Она окована точкой высшего взлёта и точкой низшего спадания сюжета картины. Это — взлёт руки Морозовой с двуперстным крестным знамением как высшая точка. И это — беспомощно протянутая к той же боярыне рука, но на этот раз — рука старухи — нищей странницы, рука, из-под которой вместе с последней надеждой на спасение выскальзывает конец розвальней.
Это две центральные драматические точки «роли» боярыни Морозовой: «нулевая» точка и точка максимального взлёта.
Единство драмы как бы прочерчено тем обстоятельством, что обе эти точки прикованы к решающей центральной диагонали, определяющей весь основной строй картины.
Они не совпадают буквально с этой диагональю, и именно в этом — отличие живой картины от мёртвой геометрической схемы.
Но устремлённость к этой диагонали и связанность с нею налицо.
Постараемся пространственно определить, какие ещё решающие сечения проходят вблизи этих двух точек драмы.
Маленькая чертёжно-геометрическая работа покажет нам, что обе эти точки драмы включают между собой два вертикальных сечения, которые проходят на 0,618... от каждого края прямоугольника картины!
 

«Низшая точка» целиком совпадает с сечением АВ, отстоящем на 0,618... от левого края.
А как обстоит дело с «высшей точкой»? На первый взгляд имеем кажущееся противоречие: ведь сечение А1В1, отстоящее на 0,618... от правого края картины, проходит не через руку, не даже через голову или глаз боярыни, а оказывается где-то перед ртом боярыни! То есть, другими словами, — это решающее сечение, средство максимально приковать внимание, как будто проходит по воздуху, впустую, перед ртом.
 

Согласен, что перед ртом.
Согласен, что по воздуху.
Но никак не согласен, что «впустую».
Наоборот!
 

Золотое сечение режет здесь действительно по самому главному. И неожиданность здесь только в том, что само это самое главное — пластически неизобразимо.
Золотое сечение А1В1 проходит по слову, которое летит из уст боярыни Морозовой.
Ибо не рука, не горящие глаза, не рот — здесь главное. Но огненное слово фанатического убеждения.
В нём, и именно в нём, — величайшая сила Морозовой.
 

Тот же Стасов пишет о ней, что она «та самая женщина, про которую Аввакум, глава тогдашних фанатиков, говорил в те дни, что она «лев среди овец»...».
Однако рука — изобразима. Глаз — изобразим. Лицо — изобразимо.

Голос — нет.
 

Что же делает Суриков? В то место, откуда вырывался бы «пластически не изобразимый» голос, он не помещает никакой детали, способной привлечь к этому месту внимание зрителя. Но он заставляет это внимание зрителя ещё сильнее и ещё взволнованнее задерживаться на этом месте, ибо это место есть пластически не изображённая точка пересечения двух решающих композиционных членений, ведущих глаз по поверхности картины, а именно — основной композиционной линии диагонали и линии, которая проходит через золотое сечение. Здесь Суриков средствами композиционных членений выходит за рамки узко изобразительного пластического изложения, и делает он это для того, чтобы дать ощутить то, что средствами одного пластического изображения и невозможно было бы показать! Он приковывает внимание не только к боярыне Морозовой, не только к ее лицу, но как бы и к самим словам пламенного призыва, вырывающегося из её уст.
Как видим, подлинно высшая точка, равно как и низшая, действительно и здесь, как в случае «Потёмкина», в равной мере оказываются на осях золотого сечения. Любопытно отметить, что сходство идёт еще глубже.
 

Золотое  сечение  в  поэзии

 

Однако для области поэзии кое-что существует и в этом направлении. Анализ этого вопроса для строя музыкальных произведений знаю больше по ссылкам на незаконченные или неизданные работы Э. К. Розенова, дающие очень высокий процент «попаданий» золотого сечения в музыке.
 

Примеры из поэзии бесчисленны. Особенно ими изобилует Пушкин. Беру наугад два любимых наиболее ярких образца: в них попадания золотого сечения в самих стихах отбиты знаком полной остановки — точкой. Точкой, которая попадается внутри стиха только в месте золотого сечения.
Первый пример взят из второй песни «Руслана и Людмилы»:

 

.. С порога хижины моей
Так видел я, средь летних дней,

Когда за курицей трусливой
Султан курятника спесивый,
Петух мой по двору бежал
И сладострастными крылами

Уже подругу обнимал;
Над ними хитрыми кругами
Цыплят селенья старый вор,
Прияв губительные меры,
Носился, плавал коршун серый
И пал как молния на двор.
Взвился, летит. || В когтях ужасных
Во тьму расселин безопасных
Уносит бедную злодей.
Напрасно, горестью своей
И хладным страхом пораженный,
Зовет любовницу петух...
Он видит лишь летучий пух,
Летучим ветром занесенный.
 

(«Руслан и Людмила», 1817—1820. Песнь вторая)

Золотое сечение проходит по тринадцатому стиху (из двадцати), разрезая его на два массива словесного материала, из которых больший — точно 0,62 всего объёма (золотое сечение: 0,618).
 

Из самого же содержания очевидно, что как раз по этому месту проходит сюжетно-темагическое разделение массива на две части, из чего наглядно следует, что золотое сечение — отнюдь не отвлеченная «игра ума», а что оно глубоко связано с содержанием.
 

Насколько же оно резко выделено, видно хотя бы из того, что во всём примере — это единственный стих, разрезаемый внутри знаком «полного препинания» — точкой.

Пример второй:

Верхом, в глуши степей нагих,
Король и гетман мчатся оба.
Бегут. || Судьба связала их.

Опасность близкая и злоба
Даруют силу королю.
Он рану тяжкую свою
Забыл. || Поникнув головою,
Он скачет, русскими гоним,

И слуги верные толпою

Чуть могут следовать за ним.

(«Полтава», 1829. Песнь третья)

Основное золотое сечение приходится после слова «забыл». А: В = 6: 4; точнее, 6,25: 3,75.

По золотому же сечению распадаются и массивы А и В внутри в такой же примерно степени приближения.

 

Дробления всего массива, а также дробления внутри массива А опять-таки отсечены полными остановками — точками, единственными опять-таки случаями, когда точка появляется внутри стиха.
 

На слове «слуги», где дробится по золотому сечению массив В, вместо точки мы имеем дело с чисто интонационным акцентом, обязательно возникающим при чтении и вызывающим соответствующую задержку перед словом «верные» (как бы «мнимая точка»).

Даты обоих примеров (1817—1820 и 1829) и приведены для того, чтобы показать, что эти элементы «органичности» одинаково характерны для Пушкина в совершенно различные этапы его творчества.
 

"Золотое сечение" и деятельность сердца

Анализ особенностей архитектоники кардиомиоцитов и сердечной мышцы в целом, а также сопряжения сердца с аортой и всей сердечно-сосудистой системой организма  позволяет заключить, что адекватная механическая деятельность сердца как насоса, перекачивающего кровь из вен в артерии, осуществляется при минимально возможном расходе энергии и мышечного вещества и соответствует пропорции "золотого сечения" и числовому ряду Фибоначчи.

Необходимо отметить, что потребление кислорода на единицу производимой сердцем работы также сведено к минимуму. Показано, что доставка этого минимального количества кислорода к месту его утилизации в миокарде происходит с минимально возможными затратами энергии, крови и сосудистого материала [4-5].

В итоге проведенного исследования выявилась общая закономерность: каждое звено в системе сердца, начиная с субклеточных параметров кардиомиоцита до сердечной мышцы, от структур эритроцита до крови в целом, от отдельного сосуда до коронарного русла, имеет оптимальную организацию и "золотое сечение" является гарантом нормального, оптимального функционирования сердца и всей системы кровоснабжения организма.

В.Цветков  установил, что у человека и у  других  млекопитающих  имеется  оптимальная  («золотая») частота сердцебиения, при которой длительности систолы, диастолы  и  полного сердечного цикла соотносятся между собой в пропорции 0,382 :  0,618  :  1  , т.е. в полном соответствии с золотой пропорцией. Так, например, для человека  эта  частота равна 63 ударам в минуту, для собак – 94 ,  что  отвечает  реальной  частоте сердцебиения в состоянии покоя.

      Далее В.Цветков обнаружил, что систолическое давление  крови  в  аорте

равно 0,382  , а диастолическое – 0,618 от среднего давления крови в  аорте.

Доля объема левого желудочка  при  ударном  выбросе  крови  по  отношению  к

конечнодиастолическому объему  у  десяти  видов  млекопитающих  в  состоянии

покоя  составляет  0,37-0,4    ,  что  в  среднем  также  отвечает   золотой

пропорции. Таким  образом,  работа  сердца  в  отношении  временных  циклов,

изменения давления крови и объемов желудочков  оптимизировано  по  одному  и

тому же принципу – по правилу золотой пропорции.

 

назад

Чи́сла Фибона́ччи — последовательность целых чисел  {Fn} , заданная с помощью рекуррентного соотношения.

 

 

Последовательность чисел Фибоначчи начинается так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 …

Иногда Числа Фибоначчи рассматривают для отрицательных n Ряд, соответствующий определению чисел Фибоначчи

(Fn = Fn − 1 + Fn − 2): ...,

-55, 34, -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, ...

 

 

n

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

Fn

-55

34

-21

13

-8

5

-3

2

-1

1

0

1

1

2

3

5

8

13

21

34

55

Легко видеть, что F n = ( − 1)n + 1Fn. Для чисел Фибоначчи с отрицательными индексами остаются верными большинство нижеприведённых свойств (но не все!).

 

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Месяцы

0 1 2 3 4 5 6 7 8 9 10 11 12 и.т.д.

Пары кроликов

0 1 1 2 3 5 8 13 21 34 55 89 144 и.т.д

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором – это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого – единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n член этого ряда мы обозначим через φS (n), то получим общую формулу φS (n) = φS (n – 1) + φS (nS – 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 – ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1xS – 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 –знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезe о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики – новой области науки, изучающей процессы в

самоорганизующихся системах.

С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения – числа рациональные. И лишь позже – после открытия пифагорийцами несоизмеримых отрезков – на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа – 10, 5, 2, – из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной – а не бесконечной, как думали ранее! – суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

 

Теорема Пифагора  и  числа  Фибоначчи

назад

 

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Рис. 12. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Рис. 13. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в

пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 14. Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также

проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

  

Из книжки Д. Брауна «Код да Винчи»

 

…Мысленно он перенесся в Гарвард, увидел себя перед аудиторией. Вот он поворачивается к доске, где мелом выведена тема «Символизм в искусстве». И пишет под ней свое любимое число:

                                  1, 618

А затем оборачивается и ловит любопытные взгляды студентов.
– Кто скажет мне, что это за число?
Сидящий в последнем ряду длинноногий математик Стетнер поднимает руку.
– Это число PHI. – Произносит он его как «фи-и».
. . . число PHI получено из последовательности Фибоначчи, математической прогрессии, известной не только тем, что сумма двух соседних чисел в ней равна последующему числу, но и потому, что частное двух соседствующих чисел обладает уникальным свойством – приближенностью к числу 1, 618, то есть к числу PHI!
И далее Лэнгдон объясняет, что, несмотря на почти мистическое происхождение, число PHI сыграло по-своему уникальную роль. Роль кирпичика в фундаменте построения всего живого на земле. Все растения, животные и даже человеческие существа наделены физическими пропорциями, приблизительно равными корню от соотношения числа PHI к 1.
– Эта вездесущность PHI в природе указывает на связь всех живых существ. Раньше считали, что число PHI было предопределено Творцом вселенной. Ученые древности называли одну целую шестьсот восемнадцать тысячных «божественной пропорцией».

 

Код да Винчи

 

назад

ФАКТЫ:

 

Божественная пропорция получила название "золотое сечение (деление)" от Леонардо да Винчи, искавшего гармонические отношения в живописи, архитектуре, строении человеческого тела, всерьез интересовавшегося и математикой. Другие названия: гармоническое деление, деление в крайнем и среднем отношении. Один из близких друзей Леонардо, крупнейший математик ХV в. итальянец Лука Пачоли, написал по его настоянию книгу "О божественной пропорции" (De divina proportione, 1497, изд. в Венеции в 1509 г.), увидев в золотом сечении божественные черты. Такая пропорция лишь одна, а единственность - высочайшее свойство Бога.

Золотое сечение было известно древним грекам. Буква PHI (фи) - первая буква в имени великого Фидия, который, по преданию, часто использовал золотое сечение в своих скульптурах. Одной из причин, по которой пифагорейцы избрали пентаграмму, или пятиконечную звезду, символом своего тайного ордена, является то обстоятельство, что любой отрезок в этой фигуре находится в золотом отношении к наименьшему соседнему отрезку.

Заключение:

Идея Гармонии Мироздания и Золотого Сечения, восходящая к Пифагорейскому учению о числовой гармонии мироздания, является древнейшей научной парадигмой, которая возникла в тот же период, как и сама наука. Эта идея относится к разряду «вечных» проблем, интерес к которой никогда не угасал в науке, но особенно возрастал в периоды наивысшего расцвета человеческой культуры. Есть все основания полагать, что последняя четверть 20-го века и начало 21-го века стали периодами своеобразного Ренессанса этой древнейшей научной парадигмы в современной науке. Современная наука, в которой преобладают процессы дифференциации, нуждается в некоторой междисциплинарной, интегрирующей и синтезирующей научной дисциплине, которая объединила бы все направления науки, искусства и технологии. И таким междисциплинарным научным направлением может стать Учение о гармонии. В его основе лежат следующие научные положения:

  1. Гармония царит во всем мире, она является упорядочивающим и творческим началом всей природы и космоса.

  2. Вся природа и искусство – это целесообразно и гармонично устроенное целое. И в природе и в искусстве отдельные вещи и явления существуют как часть целого, как момент в общей системе красоты и гармонии.

  3. «Математическая Гармония» является объективным и всеобщим свойством Мироздания в целом и любой ее части в отдельности. Все структуры природы стремятся к «гармоничному», то есть «оптимальному» (с некоторой точки зрения) состоянию.

  4. Золотой» гиперболический мир, основанный на функциях Фибоначчи и Люка и «геометрии Боднара», существует объективно и независимо от нашего сознания. Этот мир с удивительной настойчивостью проявляет себя, прежде всего, в живой природе, в частности, он обнаруживают себя на поверхности сосновых шишек, ананасов, кактусов, головок подсолнечника, корзинок цветов и т.д. в виде филлотаксисных спиралей, основанных на числах Фибоначчи, числах Люка и других числовых рекуррентных рядах подобного типа .

Стихи по Фибоначчи из Интернет

Раз,

раз.

Привет, Уголок.

По радио к вам

Вещаю сегодня свой слог.

Условностью скован я чисел бездушных,

Поэтому рифма не будет ни лёгкой, ни мягкой, ни сладко-воздушной.

Старик Фибоначчи не думал, весьма вероятно, о смысле подобной затеи всерьёз, ибо не был безумцем он.

Однако, считаю, полсотни слогов на десятой строке даже гения могут поставить в тупик временами, поэтому свой поэтический пыл придержу, щеголять в тенях пышных крон.

Тем не менее, верно подмечено, что при особых условиях духа, с дымом сливаясь душою и телом, может поэт преступить через страхи, дать волю чувствам, рукам или рифмам (как кому нравится, кто как умеет) и вдохновенно, в едином порыве, вылить на публику сотню слогов. А смысл?

«СМЫСЛ» Vladimir

Мда…

Да!

Вода.

Природа

Из водорода,

Переработав месива

Огромного количества народов, дала:

Капиталистов – идиотов, фашистов – жмотов, коммунистов – мотов, зря!

Жаль, что нет других законов в обозреваемом куске протонов, ядер, атомов, нейтронов, электронов; вот квота:

Эвклидов золотой закон сечения – соотношение целого деления – способен привести в квадратном уравнении к неутешительному выводу Творения!

Феномен может связан быть с процессом роста, с другой же стороны не все так просто, поскольку суть деления в природе, хотя и в моде, является процессом разложения, усугубляя наше положение распадом вещества, его брожением, гниением – иже тлением…

Взгляните на американцев, итальянцев, бразильцев, аргентинцев, мексиканцев, канадцев, австралийцев, африканцев, арабов, палестинцев, греков, кхмеров, индусов, тайцев, шведов, немцев, чехов, французов, португальцев и испанцев, румын, поляков, финнов и голландцев, армян, евреев, венгров, прибалтийцев, монголов, перуанцев и бельгийцев – людей столь разномастных наций – уже ли дышат все они напрасно и снится сон нам страшный ежечасно, что мы живем, не правда ли ужасно, а?

 

Литература:

  1. Стахов А. "Код да Винчи  и ряды Фибоначи" -И. Питер  2006

  2. Ковалев Ф.В. Золотое сечение в живописи. К.: Выща школа, 1989.

  3. Дюрер А. Дневники, письма, трактаты – Л., М., 1957.

  4. Цеков-Карандаш Ц. О втором золотом сечении. – София, 1983.

  5. Стахов А. Коды золотой пропорции.

  6. В.И. Коробко "Золотая пропорция и проблемы гармонии систем" (1998 г.)

  7. Виктор Лаврус статья "Золотое сечение"

  8. Сергей Эйзенштейн, Сергей Эйзенштейн о «золотом сечении» // «Академия Тринитаризма», М., Эл № 77-6567, публ.13357, 29.05.2006

  9. Материалы с сайта Музей гармонии

    назад

вверх

Hosted by uCoz